和雅地區順向坡受地震影響滑動潛能分析

林美聆^{[1]*} 王國隆^[2] 廖瑞堂^[3] 余炳盛^[4] 王元度^[1] 費立沅^[5] 紀宗吉^[5] 林錫宏^[5]

摘 要 南投縣鹿谷鄉和雅地區深坑聚落於 921 地震後 6 年,當地居民於順向坡上方發現 裂縫,研判係為受 921 地震作用所引起,裂縫最深處達數公尺,其中「六耕」裂縫長約 80 公 尺。本研究針對和雅地區順向坡進行各項現地調查及資料收集,經由各項調查及分析,探討和 雅順向坡受地震影響之滑動潛能,並驗證 921 地震對該順向坡滑動之影響。經由地質及鑽探調 查與歷年航照判釋分析比對,推測和雅順向坡於深度 60-65 公尺處存在可能滑動面,此外,利 用擬靜態分析探討可能滑動深度,由鑽探結果之破裂面位置約為 60 公尺,與分析結果可能滑 動深度頗為一致。因此由各項分析結果可驗證該處順向坡具高滑動潛能。

關鍵詞:和雅地區、順向坡、滑動潛勢、地震作用、擬靜態分析。

Potential Analysis of Herya Dip-Slope Landslide Induced by Earthquakes

Meei-Ling Lin^{[1]*} Kuo-Lung Wang^[2] Jui-Tang Liao^[3] Bing-Sheng Yu ^[4] Yung-Du Wang^[1] Li-Yuan Fei ^[5] Tzong-Jyi Jih^[5] Shi-Hong Lin^[5]

ABSTRACT Six years after the Chi-Chi Earthquake, severe cracks were found in the Herya dip-slope in the Senkern Community, Nantou County, and were postulated being induced by the Chi-Chi Earthquake. The crack in the Liougern area was several meters deep and 80m long. In this research, the potential of the Herya dip-slope landslide induced by earthquake was studied. Field investigations were conducted, and potential analysis was performed using pseudo-static procedures. The possible sliding surface identified from boring logs and topographic analysis was at about 60 meters deep, which appeared to be consistent with the results from pseudo-static analysis. Results of the study verified the high sliding potential of the Herya dip-slope subjected to a similar earthquake.

Key Words: Herya area, dip-slope, landslide potential, earthquake, pseudo-static analysis.

[2] 國立暨南國際大學土木工程學系

Land Consultant Engineering Co., Taipei, R.O.C. 〔4〕國立台北科技大學材料及資源工程學系

^[1] 國立臺灣大學土木工程學系

Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

Department of Civil Engineering, National Chi Nan University, Nantou County, Taiwan, R.O.C. [3] 青山工程顧問

Department of Materials and Mineral Resources Engineering, National Taipei University of Science and Technology, Taipei, R.O.C.

^[5] 經濟部中央地質調查所 Central Geological Survey, Ministry of Economics, Taipei, R.O.C.

^{*} Corresponding Author. E-mail : linml@ntu.edu.tw

一、前 言

臺灣地區由於多山地形且位於環太平洋地震帶, 受到降雨及地震所引致的邊坡災害一直是受到重視的 課題,而有關深層滑動的研究,於莫拉克颱風後更逐 漸受到重視。位於南投縣鹿谷鄉和雅村深坑聚落西側 之和雅地區,北勢溪流經其東邊,附近交通要道主要 為通往溪頭及杉林溪遊憩區之縣道151線公路。和雅 地區於921 地震後6年由鹿谷鄉民張錫煒、陳正雄等 人在新開發的和雅村大崙山高山觀光茶園附近的「崙 頭」及「六耕」兩處林地發現裂縫,裂縫位於坡體較 高位置,研判係為受921 地震作用所引起,因該處竹 林密佈、人跡罕至,所以遲遲未發現裂縫。「崙頭」的 裂縫長度雖長但寬度及深度較小,「六耕」裂縫長約80 公尺,最深處則超過一支孟宗竹的長度,目前「六耕」 裂縫已由水土保持局完成裂縫填補灌漿。

中央地質調查所勘查報告 (2006) 指出,此邊坡 無論在地震前後均具有多處崩崖與滑動後造成的反斜 崖,推測過去至少有7 次規模與範圍都不同的滑動。 其中有4 次小規模滑動發生在鄰近聚落的下邊坡;另 外則有3 次屬於大規模的滑動。和雅地區係為砂頁岩 互層之順向坡,順向坡下方有深坑部落居住。一般順 向坡滑動經常導致嚴重之災損,主要係因其破壞坡體 滑動速度極快而且難以預知。民國86年,台北縣汐止 林肯大郡發生順向坡滑動造成28人罹難、921大地震 引致草嶺及九份二山大規模地滑皆為順向坡滑動的例 子。台灣地區大多數大規模與中等規模的地滑災難, 常由順向坡滑動所造成的。本研究針對和雅地區受 921 地震作用影響所產生之可能滑動情形進行調查與 分析,以探討和雅順向坡受震之滑動潛能。

二、和雅研究區之地理位置與地質

研究地區位於南投縣鹿谷鄉和雅村深坑聚落西 側,坡向大致由西南朝向東北方,北勢溪流經其東邊, 附近交通主要為通往溪頭及杉林溪遊憩區之縣道 151 線公路,其地理位置如圖 1 所示。在地形上,本區位 於阿里山山脈北缘,區域海拔高度約 900 至 1400 公 尺,高差達 500 公尺,附近較高之山峰海拔約 1500 公尺,位於區域之西南緣,區域內有產業道路可達。 區域內地質除北勢溪對岸有南莊層出露外,調查區域 及其附近均為桂竹林層分佈,該區域之地質圖如圖 2 所示。桂竹林層標準地層是苗栗縣出磺坑油田附近的 桂竹林層,在中部地區的桂竹林層分為三個岩段,分 別為下段的關刀山砂岩、中段的十六份頁岩及上段的 大窩砂岩。調查區出露為上段大窩砂岩,以細粒至粉 砂質砂岩為主,含有較多頁岩夾層。砂岩呈淡灰色到 青灰色,細粒,厚層到中層,並有交錯層、波痕化石 等淺水沉積之特徵,風化後呈黃棕色甚至紫紅色。本 地區節理位態分布大致可區分為 2 組,分別為 N82°E/86°S及N8°E/78°N。以年度 36 年到 94 年 之多期航照進行崩塌地之地貌特徵判釋分析,以確認 個別滑動岩體單元,提供進一步瞭解崩塌滑動之機制 與滑動規模。本次判釋分析所使用的航照由於航照年 代並不連續,因此並無法得到每年之崩坍事件,但是 從現有航照可發現每張均有不同規模的崩坍發生,判 釋結果標示於 94 年航照如圖 3 所示。

 Location map of the study area in Herya Village, Nantou County

三、潛在滑動模式探討

依據圖 2 和雅地區地質圖中之地層層面走向與傾 角分佈大致與坡面一致,故其應屬於順向坡地形,此 類地形如果坡面正好位於同一岩層,且該岩層延伸良 好的話,其地形等高線的延伸方向會與地層走向大約 一致,而垂直等高線的方向將與地層的傾斜方向吻 合,並且山坡坡度會與岩層傾角大致相同,由圖 1 和 雅地區的地形等高線分佈狀況可以明顯觀察到上述現 象。局部地區的等高線延伸方向與坡度,均與現地量 測的地層走向與傾角吻合,或者可以推論其山坡地表 是位於同一岩層面上。然而仔細觀察可以發現這種順 向坡等高線與岩層位態吻合的現象無法一致延伸到全

- ■3 前投縣和雅研乳區歷知崩坍位置標示於 94 年航 馬圖
- Fig.3 Historical landslide scarps marked on 2005 aerial photo of the Herya study area

- Fig.4 Five sliding blocks on the dip-slope terrain of the study area

調查區域,在調查區域與其上方,大致可以觀察到五 個較大的地形區塊,如圖 4 所示,各區塊的山坡地表 分別落於同一沈積系統中不同高程的岩層面上。茲將 其暫以 A、B、C、D、E 五個地形區塊稱之。其中 A 區塊的岩層位置最高,其次為 B、C、D,而 E 區塊的 岩層層位最低。C、D 兩區塊的高差較小。這些區塊間 在圖 3 航照上可以清楚觀察到分別被一些線性構造所 區隔。地形區塊 C 與 D 大致是被深節理所區隔,在個 別的區塊中雖然會有許多薄頁岩存在,但是如果這些 薄頁岩層的延續不夠廣闊,便較不具形成大規模滑動 的潛能,而若在各別區塊內具延續夠廣的頁岩,則可 以在各別的區塊內形成較小規模的滑動,此種較小規 模的滑動面數目可能較多,但可能未延續到另一區塊。

- ■5 和雅研空 G地質鑽孔 b 監測儀 器 (CGS, 2008)
- Fig.5 Location of the bore-holes and instrumentation in the study area

- ■6 部分 H08-4T 岩心 時H08-5 Ъ H08-6 由 見 型 世
- Fig.6 Matching of fractured-zone in cores from bore holes H08-5, H08-4T, and H08-6

和雅研究區之滑動型態屬順向坡,岩層屬厚層砂 岩夾薄層頁岩,研判地層分佈狀況應較為單純。中央 地質調查所 (2008) 於此處進行地質鑽探及監測系統 設置,其配置情形如圖 5 所示。根據地質鑽探結果研 判,和雅研究區之地層,由上而下可概分為二個層次, 分別為覆蓋土層或崩積層以及厚層砂岩夾薄層頁岩。 地調所於研究區內共計鑽取七孔,因本地區屬順向坡 地形,參照鑽井相對位置及其地形高程與地層分佈比 對,可知其中 H08-4,H08-4T,H08-5 及 H08-6 大致鑽於同一層位的岩層,而 H08-1 與 H08-3 則是 鑽取前述四個主要鑽井上方之岩層,而 H08-2 乃鑽取 前述四個主要鑽井下方之岩層。

因此以四個主要鑽井 H08-4,H08-4T,H08-5 及 H08-6之岩心進行對比分析。其中 H08-4(H08-4T) 與 H08-5 及 H08-6的井距各約 300 餘公尺及 600 餘公尺,三者的岩心對比除了單調的砂岩外,彼此間 的頁岩薄層、破裂面、化石段、以及銹染帶等出現位 置無法完全對比得上,但在四口井的分別約 40~50 公 尺不等的深度,各有約 2 公尺厚的沈積擾動帶可以彼 此對應。圖 6 顯示 H08-4T 與 H08-5 的此岩段的照 片,此外位於 H08-6 深度約 61m 處有厚達 10 公分 的主要破裂帶也可以清楚相互對比,如圖 6 所示。同 時藉由地化性質之比對,可以判定 H08-6 與 H08-5, H08-4 破裂帶係為同一層,且明顯為黏土質地層。比 對 H08-6 與 H08-4 在圖 4 所示地形區塊,大致可推 定該破裂帶由上方H08-6所在之D區塊上緣延伸分布 至 H08-4 所在之 D 區塊下緣,且此一主要區塊之地層 具有較一致之分布情形,標示於圖 7 所示之 A-A'剖 面。由於各鑽井岩心均發現多處之破裂帶具有明顯剪 動情形,目其多為黏土質地層,材料強度遠低於單調 的砂岩,顯示出分區塊各別引致滑動之可能,與圖 4 所示地形區塊性狀相符。因此透過岩心比對以及前項 地形分析,在各別的區塊內可能分別形成較小規模破 裂滑動,但部分區塊滑動面可能未延續到另一區塊, 由各孔岩心中存在許多各別破裂面,但未能完全延伸 比對至其他孔岩心之破裂面位置可加以驗證。然而 H08-6, H08-5 與 H08-4 位於面積較大之 D 區塊, 目有較大範圍之一致性地層及破裂滑動面延伸分布, 研判應具有較大災害潛勢,故選取為後續穩定分析之 主要位置。至於其他區塊所比對之破裂滑動面引致的 滑動規模雖較小,但從現地跡象及圖 3 之航照判釋小 規模滑動結果顯示其發生的次數較為頻繁,日後亦應 加強注意。

依據地形分析及地質調查與岩心比對後,沿圖 5 所示兩處測線建立之地質剖面圖如圖 7 所示。

Fig.7 Geological profiles along survey profiles HL-1 and HL-2 of the study area

四、順向坡受震滑動潛能分析

和雅研究區根據前述分析研判係一砂頁岩互層的 順向坡,本研究以擬靜態平面滑動模式進行分析,並 針對其受震滑動潛能進行探討。擬靜態分析模式之應 用主要係針對安全係數為1時之臨界加速度,以探討 邊坡受震引致滑動之潛能。進行分析時首先針對單一 砂岩地層下測試不同滑動面頂點位置與深度的破壞情 況及臨界加速度,以瞭解對應不同滑動面引致邊坡滑 動所需之地震地表加速度條件;其次加入所推估大範 圍破碎頁岩層之位置,以探討破碎頁岩層對於引致邊 坡滑動臨界加速度之影響,依臨界加速度之變動可提 供對於和雅地區順向坡受震滑動潛能評估依據。

1. 分析地層剖面

根據前述地質鑽孔位置及地層與地形分析,選取 和雅地區順向坡體中央可能之滑動剖面位置,如圖 8 所示。參考92年之數值地形資料,剖面地層主要為砂 岩夾薄層頁岩,並有破碎帶出現,依據鑽探岩心及圖7 之 A-A'地質剖面可協助研判破碎頁岩夾層位置,繪製 岩體滑動分析用地層剖面圖,如圖9所示。由於各鑽 孔岩心除單調砂岩可供對比之外,岩心中破碎頁岩夾 層廣泛出現於各鑽孔中,其佔整體岩心之比例頗低。 然而破碎頁岩的存在對坡體強度有深遠影響,因此在 數值分析上不宜以單一砂岩地層代表實際情況。依據 地調所 (2008) 之調查與材料試驗結果,較淺層與較 深層的砂岩材料在強度的表現上差異不大,故在進行 岩體滑動分析時,將岩體材料簡化為單一砂岩夾頁岩 層 (SS-SH), 並由岩心比對結果推估大範圍破碎頁岩 灰層之位置如圖 9 以進行分析, 並討論破碎頁岩對岩 體穩定之影響。

2. 材料參數選取

進行邊坡穩定分析時,所需之地層材料參數,包 括材料單位重γ、剪力強度參數之凝聚力c及摩擦角φ 值等。然而以上材料參數須由實驗室進行相關指數性 質及力學試驗方可獲得。因此採用之材料相關參數係 依據地調所 (2008) 之材料試驗結果及參考相關文獻 資料來估算。破碎頁岩部分參考材料試驗結果(地調 所,2008) 及施國欽 (1996)、胡邵敏 (1979)、張吉 佐等 (2004) 中之相關參數,以此做為分析模型中砂 岩-頁岩及破碎頁岩之輸入材料參數。整理分析模型所 採用材料參數設定如表 1 所示。

3. 可能滑動深度分析

首先利用有限元素數值模式 ABAQUS 軟體先行 分析圖 9 所示之坡體剖面靜力平衡,結果顯示該剖面 地形於坡上方凹陷處產生應力集中情形,而於現地實 際觀測到之裂縫亦標示於圖 9 中,其並未與數值分析 所得之應力集中處重疊,故於分析時,滑動面上之上 界以實際裂縫所在位置及地形凹陷處應力集中位置兩 種進行比對與分析,滑動面下界則以深坑聚落所在位 置為其前緣。由於現地調查並無確切發現坡趾層面外 露 (daylight) 證據,故分析著重於坡面中有鑽孔資料 之位置。由於順向坡的滑動多屬平面滑動,且於各區 塊鑽孔岩心有許多薄頁岩及破裂帶存在,故先將岩體 材料簡化為單一砂岩夾頁岩層 (SS-SH), 選取不同可 能滑動深度在受到不同地震加速度下進行分析,分析 剖面如表 2 所列。分析時採用 STABL 程式以指定滑 動面進行安全係數之分析,因現地觀察並未發現明顯 之地下水情形,故滑動分析時暫不考慮地下水位之影 響,分析結果如圖 10 所示。由表 2 及圖 10 可知,單 一岩層同樣滑動頂點下,滑動深度越深,破壞的可能 性越高。整理分析結果可知,在地震力小於 0.3g 的情 況下,所有分析破壞面之安全係數皆大於1,表示破壞 可能性低;倘若地震力大於 0.4g,則滑動頂點在地形 凹處的分析破壞面,在滑動深度 50 公尺以上都有破壞 發生的機會,而滑動頂點在裂縫處的分析破壞面,滑 動深度要達 70 公尺以上才有破壞發生的機會;當地震 力大至 0.5g 時, 滑動頂點在地形凹處的分析破壞面, 只要滑動深度為 30 公尺以上就有破壞發生的可能,而 滑動頂點在裂縫處的分析破壞面,滑動深度約在50公 尺以上才有機會發生破壞。無論係以裂縫發生處或以 地形剖面之不規則凹處 (易發生應力集中之現象) 為 分析滑動面頂點,分析結果皆顯示有安全係數小於 1 的可能性。而滑動頂點在地形凹處的滑動面,其破壞 發生的可能性遠較滑動頂點在裂縫處的分析滑動面顯 著。

表1 地電分析材料参劃表

Table 1 Material properties for stability analysis

	濕單位重 (kN/m ³)	飽和單位重 (kN/m ³)	凝聚力 (kPa)	摩擦角 (°)
砂岩-頁岩層 (SS-SH)	23.50	23.60	300	30
破碎頁岩 (SH)	21.17	21.30	100	25

根據現有資料顯示,和雅地區坡面之裂縫可能係 來自921 地震,故對不同分析破壞面測試不同地震力 所產生之影響,並找出分析破壞面安全係數為1時之 臨界加速度,結果如表2所示。分析結果顯示破壞面 臨界加速度由小而大依序為J、I、H、E、G、D、F、 C、B、A,臨界加速度值越小表示該滑動面破壞的可 能性越高,如現地之地震加速度值超越表2所列臨界 加速度,即可能於對應滑動面發生破壞。由於本項初 步分析係將分析模型地層簡化為單一材料,故滑動深 度破壞與否與重力有極大關係。

因此進一步考量鑽孔岩心有許多薄頁岩及破裂帶 存在,於地層剖面加入推估之大範圍破碎頁岩層之位 置約於 60 公尺深度,而破壞面位於破碎頁岩層中,故 選取不同滑動頂點的分析破壞面,所得臨界加速度值 如表 3 所示。比較分析滑動面 D 與分析滑動面 D1,同 樣的滑動頂點在裂縫處,分析滑動深度也同樣在約 60 公尺處,但 D 的臨界加速度值為 0.425g 而 D1 的卻只 有 0.205g,不到 D 的一半。相似的情形也發生在分 析滑動面 I 與分析滑動面 I1,同樣的滑動頂點在地形凹 處,分析滑動深度也同樣在約 60 公尺處,但 I 的臨界 加速度值為 0.357g 而 I1 的卻只有 0.175g,同樣不到 一半。由此結果可知,破碎頁岩層的存在會造成岩體 強度明顯減弱,若現地情形與由岩心推估的大範圍破 碎頁岩相符,則和雅地區發生深層大規模滑動的潛勢 相對升高。而滑動頂點在地形凹處的滑動面因受到應 力集中之影響,其破壞發生的可能性仍遠較滑動頂點 在裂縫處的分析滑動面顯著。

圖 8 和雅地 BP岩電影像動分析剖面位置 圖 Fig.8 Profile for stability analysis of the Her-ya dip-slope

表2 軍- 岩े (SS-SH) 不 に 分析 深動 ひ 短界 1 口速度 結果 表

Table 2Locations of different slip surfaces and corresponding critical accelerations for single formation
SS-SH

滑動面	滑動面頂點	滑動深度 (m)	臨界加速度 (g)	不同分析滑動剖面位置圖			
А	裂縫處	30	0.780	1400 1350			
В	裂縫處	40	0.583	1300			
С	裂縫處	50	0.475	1200			
D	裂縫處	60	0.425	1100			
Е	裂縫處	70	0.395	1000			
F	地形凹處	30	0.485	1400 1350			
G	地形凹處	40	0.420	1300			
Н	地形凹處	50	0.380	1200			
Ι	地形凹處	60	0.357	1100			
J	地形凹處	70	0.343	1000			

五、921 地震影響分析

為瞭解 921 地震作用力對於研究區域順向坡之影 響,並與前節分析結果相比對,故先針對 921 地震時 研究區所受地震力加速度進行推估。首先計算出研究 區順向坡分析剖面之坡向為北43度東,參考氣象局強 震觀測網選取距離研究區域最近的5個測站,分別為: 林中國小 CHY024, 東和國小 CHY101, 草嶺 CHY080,阿里山氣象站 CHY074,及水里國小 TCU078,各測站與研究區域之相對位置如圖 11 所 示。自氣象局網站擷取 921 地震時之各測站地震加速 度歷時紀錄,將個別測站加速度紀錄之東西向與南北 向之資料投影至分析剖面之坡向,再將兩向投影量相 加後可得到各測站投影到邊坡坡向的加速度歷時資 料,如表 4 所列。在求得各測站投影邊坡坡向最大加 速度值後,以研究區到各測站距離平方反比法內插計 算研究區域之邊坡坡向加速度值,做為分析時輸入之 水平向加速度,計算所得為450gal,即0.46g。同樣 以各測站距離平方反比法內插計算研究區域之垂直方 向加速度值,做為分析所輸入之垂直地震力,該值約 為 295gal, 即 0.30g。將此項水平向加速度與表 2 所 列單一岩層不同分析滑動面僅考慮水平向地震力下之 臨界加速度比較,在滑動面D,E,G,H,I,及J所 得到之臨界加速度均低於研究區域內插所得之水平向 加速度,顯示在這幾個滑動面位置均有可能引致順向 坡滑動。其中滑動頂點在裂縫處的分析破壞面,滑動 深度要達 60 公尺以上才有破壞發生的機會;而滑動頂 點在地形凹處的分析破壞面,只要滑動深度為40公尺 以上就有破壞發生的可能。

由於前節中所繪製之邊坡分析剖面採用之 DTM 資料為民國 92 年之資料,應屬 921 地震後所建立, 故重新利用民國 78 年 40mx40m 的 DTM 製作同樣 位置之地形剖面,如圖 11 所示。由圖中發現邊坡上方 之地形凹處,於民國 78 年 (921 地震前) 並未發現, 有可能係日後開墾闢路或崩塌後之結果,但亦可能係 精度及測量上之差異。依據前節分析剖面所推估大範

■ 9 地種穩定分析地層剖面圖 Fig.9 Profile for slope stability analysis

■ 10 軍- 岩層 (SS-SH) 不同分析濯動百分 ▲ 係 新 時地震」 關係區

Fig.10 The relationship between peak ground acceleration and safety factor of the slope for single formation SS-SH

滑動面	滑動面頂點	滑動面深度	滑動面	滑動面頂點	滑動面深度
D1	裂縫處	約 60 公尺	I ₁	地形凹處	約60公尺
臨界加速度:0.205g			臨界加速度:0.175g		

Table 3 Results of stability analysis with fractured-zone included in the profile

表3 具母碎頁岩地電影會動分析結果表

圍破碎頁岩層位置深度,建立兩個民國 78 年的剖面, 分析破壞面分別位於 D₂ (滑動頂點為裂縫處)和 I₂ (滑 動頂點為地形凹處),並輸入 921 的最大地震加速度進 行分析,分析結果如表 5 所列。其結果顯示,兩者之 安全係數均低於 1 甚多,亦即最大地震加速度已遠超 過臨界加速度,表示 921 地震作用下,和雅順向坡發 生滑動的機會極高,而且破壞面頂點仍以目前上方坡 面地形凹處之安全係數較裂縫處為低,顯示自上方坡 面凹處發生大規模滑動破壞的可能性極高。雖表 5 之 分析剖面地形未出現地形凹處,但分析結果仍顯示以 目前上方坡面凹處為滑動面頂點之滑動潛能極高,故 該地形凹處極為可能於 78 年以後,邊坡即已於該位置 發生部分崩塌所造成。

六、結 論

南投縣和雅地區深坑聚落於921 地震後於順向坡 上方發現裂縫,研判係為受921 地震作用所引起,本 研究針對和雅研究區滑動潛能進行調查分析。經由地 表地質調查、鑽探及歷年航照判釋結果,顯示該區岩 層屬厚層砂岩夾薄層頁岩,滑動型態屬順向坡。地形 分析顯示該區有五個較大的地形區塊分別落於不同高 程的岩層面上,透過岩心比對發現各別區塊內有較多 數目的破裂面,而於面積較大之D區塊有較大範圍之 一致性地層及破裂滑動面延伸分布,研判應具有較大 災害潛勢。

由擬靜態之滑動模式分析結果判定和雅順向坡在 受震時存在高度之滑動潛能,鑽探結果之破裂面位置 約為60公尺,與分析結果可能滑動深度頗為一致。由 採用921地震之加速度分析結果顯示,各滑動面位置 形成滑動之可能性均相當高,此外以順向坡上方坡面

鄙 11 和雅地 區地 震測站分析 圖

Fig.11 Locations of the strong ground motion stations with respect to the study area

表 4	都沂和雅地	届助電測訪921	- 地震
, <i>,</i>			

Table 4The Chi-Chi Earthquake ground motion
recorded by neighboring stations

測站代碼		CHY074	CHY101	CHY024	CHY080	TCU078
測站名稱		阿里山 氣象站	東和國小	林中國小	草嶺	水里國小
座標 (TWD97)	х	231425	205955	211075	217150	235544
	у	2600573	2620563	2628301	2610566	2633791
與研究區水平距離 (km)		20.58	21.08	17.67	14.09	15.63
最大加 速度值 (gal)	垂直向	97.68	162.16	141.40	715.92	171.00
	南北向	157.02	390.10	162.16	841.52	302.48
	東西向	229.20	332.74	276.34	792.36	439.70
	投影向	197	334	235	785	365

表5 腓 921 地震前地形地震犀動分析結果表

Table 5 Results of analysis using topography prior to the Chi-Chi Earthquake

凹處為滑動面頂點之滑動潛能較地震後發現之坡面裂 縫處為高。

目前和雅地區滑動型態呈現為不同區塊滑動,此 類滑動規模雖較小,但從現地跡象及航照判釋結果顯 示其發生的頻率較高,且研究區順向坡在承受類似 921 地震力時滑動潛能相當高,故仍應加強注意致災 之可能。

參考文獻

- 經濟部中央地質調查所 (2008),「地質敏感區災 害潛勢評估與監測,重大山崩災害潛勢地區災害 模擬與監測(2/4)」,中央地質調查所報告第 97-14 號。(CGS (2008). Simulation and Monitoring in Areas Susceptible to Landslide Hazard (2/4), Report No.97-14. (in Chinese))
- 邵敏 (1979),「砂岩與頁岩之邊坡穩定問題」, 邊坡穩定與坍方研討會論文集,117-145。(Hu, S. M. (1979). "The slope stability problems of sandstone and shale," *Proceedings, Slope*

Stability and Landslide Conference, 117-145. (in Chinese))

- 施國欽 (1996),「岩石力學」。(Shi, K. C. (1996). Rock Mechanics. (in Chinese))
- 張吉佐、劉弘祥 (2004),「砂泥層地盤之蘭潭隧 道工程探討」,地工技術,99,39-50。(Chang, C. T. and Liu, H. S. (2004). "Tunneling in Loosely Cemented Sand Layer/Stiff Clay. Lantan Tunnel," *Sino-Geotechnics*, 99, 39-50. (in Chinese))
- 經濟部中央地質調查所 (2006),「南投縣鹿谷鄉 和雅村深坑聚落岩體滑動勘查報告」。(CGS (2006). Investigation Report on Rock Slide at Senkern Community, Herya Village, Nantou County. (in Chinese))

2011 年 05 月 24 日 收稿 2011 年 09 月 14 日 修正 2011 年 10 月 12 日 接受 (本文開放討論至 2012 年 6 月 30 日)